

Roll No.

3 0

No. of Questions 38

No. of Printed Pages : 8

HALF YEARLY EXAMINATION-2023-24

CLASS-XI

SUBJECT-MATHEMATICS (041)

Time : 3 Hours

M.Marks : 80

General Instructions:

1. This Question paper contains five sections A, B, C, D and E. Each Section is compulsory. However there are internal choices in some questions.
2. Section-A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section-B has 5 Very short Answer type (VSA) questions of 2 marks each.
4. Section-C has 6 Short Answer Type questions (SA) of 3 marks each.
5. Section-D has 4 Long Answer Type questions (LA) of 5 marks each.
6. Section-E has 3 source based or case based questions of 4 marks each with sub-parts.

SECTION-A

(Multiple Choice Questions)

Each question carries 1 mark.

1. Which of the following set is Empty?
 - A. $\{x : x \text{ is an integer, } x^2 \leq 9\}$
 - B. $\{x : x \text{ is rational and } x^2 - 2 = 0\}$
 - C. The collection of all Hindi Dramas written by Shakespeare
 - D. $\{x : x \in \mathbb{Z}, |x| \leq 12\}$
2. Which of the following interval represent the Set $R = (-1, 1)$.

(a) $(-1, 1)$	(b) $[-1, 1]$
(c) $(-\infty, -1) \cup (1, \infty)$	(d) $(-\infty, -1] \cup [1, \infty)$

3. Which of the following is Singleton set?

A. $\{x : |x| < 4, x \in \mathbb{N}\}$

B. $\{x : 2 < x < 4, x \in \mathbb{N}\}$

C. Set of all Prime numbers between 15 and 21.

D. $\{x : 5 < x < 6, x \in \mathbb{R}\}$

4. If R is a Relation from a Set A to a Set B then

A. $R = A \cup B$

B. $R = A \cap B$

C. $R \subset A \times B$

D. $R \subseteq A \times B$

5. Consider the Relation $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } b = 2a - 4\}$

If $(a, -2)$ & $(4, b) \in R$ then value of a and b is

A. $a = 4$ $b = 1$

B. $a = 1$ $b = 4$

C. $a = -1$ $b = -4$

D. $a = -4$ $b = -1$

6. Evaluate $\tan 1^\circ \tan 2^\circ \tan 3^\circ \dots \tan 89^\circ$

(a) 1

(b) 0

(c) $\frac{1}{2}$

(d) Not defined

7. Which of the following is not correct.

(a) $\sin \theta = \frac{-1}{5}$

(b) $\cos \theta = 1$

(c) $\sec \theta = \frac{1}{2}$

(d) $\tan \theta = 20$

8. If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$ then the value of $\theta + \phi$ is

(a) $\frac{\pi}{6}$

(b) π

(c) 0

(d) $\frac{\pi}{4}$

9. The value of $\sin(45^\circ + \theta) - \cos(45^\circ - \theta)$ is

(a) $\sqrt{2} \cos \theta$ (b) 1
(c) 0 (d) $\sqrt{2} \sin \theta$

10. If ${}^n C_{12} = {}^n C_8$ then n is equal to

(a) 20 (b) 12
(c) 6 (d) 30

11. The total number of 9 digit numbers which have all different digits is

(a) $10!$ (b) $9!$
(c) $9 \times 9!$ (d) $10 \times 10!$

12. If z is a complex number then which of the following is true.

(a) $\bar{z} = z$ (b) $z = |z|^2$
(c) $z = \bar{z} \Leftrightarrow z$ is purely Real (d) $z = \bar{z} \Leftrightarrow z$ is purely Imaginary

13. $(\sqrt{-2})(\sqrt{-3})$ is equal to

(a) $\sqrt{6}$ (b) $-\sqrt{6}$
(c) $\sqrt{6}i$ (d) None of these

14. The multiplicative inverse of $2 - 3i$ is

(a) $2 + 3i$ (b) $\frac{2}{13} + \frac{3}{13}i$
(c) $\frac{2}{13} - \frac{3}{13}i$ (d) $3 + 2i$

15. $(a + b)^5$ is equal to

(a) $a^5 + b^5$
(b) ${}^5C_0 a^5 + {}^5C_1 a^4b + {}^5C_2 a^3b^2 + {}^5C_3 a^2b^3 + {}^5C_4 b^4$
(c) ${}^5C_0 + {}^5C_1 a^4b + {}^5C_2 a^3b^2 + {}^5C_3 a^2b^3 + {}^5C_4 ab^4 + {}^5C_5 b^5$
(d) $a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$.

16. Number of terms in the expansion of $[(2x + y^3)^2]^3$ is

(a) 3 (b) 7
✓(c) 6 (d) 4

17. Solution set for Inequality $\frac{1}{x-2} < 0$ is

✓(a) $(2, \infty)$ (c) \emptyset
(b) $(0, 2)$ (d) $(-\infty, 2)$

18. If $-4x > 20$ and $x \in \mathbb{Z}^+$ then x belongs to

(a) $\{-6, -7, -8, \dots\}$ (b) \emptyset
✓(c) $\{-4, -3, -2, -1\}$ (d) $\{1, 2, 3, 4, \dots\}$

ASSERTION-REASON BASED QUESTIONS

In the following questions a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

(a) Both A and R are true, and R is the correct explanation of A.
(b) Both A and R are true and R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.

19. Assertion (A) : If $\tan x = -\sqrt{3}$ and x lies in quadrant IV then $x = \frac{5\pi}{3}$ \top

Reason (R) : $\tan \frac{\pi}{3} = \sqrt{3}$ and $\tan(\pi + x) = +\tan x$.

⑥

20. Assertion (A) : $f = \{(ab, a + b) : a, b \in \mathbb{Z}\}$ is a function.
 Reason (R) : $f : A \rightarrow B$ is a function iff each element of A has a unique image in B. \checkmark Q

Section-B
(Very Short Answer Type Questions)

Each question carries two marks.

21. Find the Range of $f(x) = \sqrt{x^2 + 4} \neq 0$
22. Using Binomial theorem, Indicate which number is larger $(1.2)^{4000}$ or 800.
23. A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
24. If $\sin x = \frac{3}{5}$, $\cos y = \frac{-12}{13}$ where x and y both lie in second quadrant find the value of $\sin(x + y)$
25. Evaluate :
$$\frac{\sin(\pi + \theta) \cos\left(\frac{\pi}{2} + \theta\right) \tan\left(\frac{3\pi}{2} - \theta\right) \cot(2\pi - \theta)}{\sin(2\pi - \theta) \cos(2\pi + \theta) \operatorname{cosec}(-\theta) \sin\left(\frac{3\pi}{2} + \theta\right)}$$

OR

Prove that :
$$\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$$

Section-C
(Short Answer Type Questions)

Each question carries three marks.

26. A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if
 - (a) they can be of any colour
 - (b) two must be white and two red
 - (c) They must all be of the same colour.

27. Find $(a + b)^4 + (a - b)^4$. Hence evaluate $(\sqrt{2} + \sqrt{3})^4 + (\sqrt{2} - \sqrt{3})^4$.

28. A solution is to be kept between 40°C and 45°C . What is the range of temperature in degree fahrenheit, if the conversion formula is $F = \frac{9}{5}C + 32$.

29. Prove that $\sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{16}$.

OR

Prove that $\frac{\sec 8\theta - 1}{\sec 4\theta - 1} = \frac{\tan 8\theta}{\tan 2\theta}$.

30. If $\tan x = \frac{-4}{3}$ and $\frac{\pi}{2} < x < \pi$, find the values of

(i) $\sin \frac{x}{2}$

(ii) $\cos \frac{x}{2}$

31. If $z_1 = 3 - 2i$, $z_2 = 1 - i$ find $\left| \frac{z_1 + z_2 + i}{z_1 - z_2 - i} \right|$

Section-D

(Long Answer Type Questions)

Each question carries five marks.

32. Prove that $\frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x} = \operatorname{cosec} 2x - \cot 2x$

OR

Prove that $\frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos 2x \cos x - \sin 4x \sin 3x} = \tan 2x$

33. Find the number of arrangements of the letters of the word 'INDEPENDEŃCE'. In how many of these arrangements

- do the vowels never occur together ?
- do the words begin with I and end in P ?

34. Find all non-zero complex numbers z satisfying $\bar{z} = iz^2$. 10, 30.

35. Show that $2^{4n+4} - 15n - 16$ is divisible by 225 when $n \in \mathbb{N}$. 10

Section-E

(This Section comprises of three case-study / passage based questions of 4 marks each with sub-parts.

36. Case Study 1 : Read the following passage and answer the questions below:
 While solving a typical equation, a person finds that one of the root of the equation is a complex number $z = \frac{1+2i}{1-3i}$, help him to find

- The standard form of z . (1)
- If $z = 2x + (4 - y)i$ then find x and y . (1)
- The modulus of z . (1)
- In which Quadrant z lies ? (1)

37. Case Study 2 : During the math class, a teacher clears the concept of Permutation and combination to the 11th class students. After the class she asks the students some questions. One of the question was : how many numbers between 99 and 1000 can be formed such that

- Every digit is either 4 or 9. (1)
- These is no restriction. (1)
- Atleast one of digits is 9. (2)

38. Case Study 3 : Shelly (S) and Danju (D) are playing Ludo at home during Vacations. While rolling the dice, Shelly's sister noted the possible outcomes of the throw every time. Let A be the set of Players while B be the set of all possible outcomes.

Help her sister to find the following :

- (i) $A \times B$ (1)
- (ii) No. of Relations are possible, from A to B. (1)
- (iii) If $C = \{2, 4\}$ then verify $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (2)

□□□